The specifics: a germanium wafer is spun at high speeds and subjected to various gases that encourage the growth of layers of semiconducting material such as gallium arsenide. "We have somewhere between 20 and 30 layers of semiconductor material," explains David Lillington, president of Spectrolab, Inc., which developed the new cell. The resulting layers in one single solar device respond to different spectra of light. The top layer, for example, captures the energy of blue light while the middle layer absorbs green and the bottom uses red. Such triple-junction solar cells are specially tuned to work with concentrated light, in this case the wattage of 240 suns.
Friday, November 2, 2007
Superefficient, Cost-Effective Solar Cell Breaks Conversion Records
A tiny chip similar to the solar cells carried by many satellites and other spacecraft today--including the surprisingly long-lived Mars Rovers--has shattered previous records for maximum efficiency in producing electricity from sunlight. "This is the photovoltaic equivalent of the four-minute mile," affirms Larry Kazmerski, director of the Department of Energy's National Center for Photovoltaics in Colorado. "This is a disruptive technology that eventually could provide us, at least in the Southwest, with cost-competitive electricity fairly quickly."
Subscribe to:
Post Comments (Atom)

No comments:
Post a Comment